
Dynamic Binding
vs

Lexical Binding

What is the value of the following expression?

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

The real question, of course, is What is the
value of y in the body of f when we call (f 2)?

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

a) Scheme, Java and C use static binding, also
called lexical binding. They connect the
reference of y to the nearest surrounding
declaration of y, which in this case is [y 3].

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

b) Early Lisp used dynamic binding, which
connects a reference of y to the most recent
declaration of y, which in this case is [y 17].

In Scheme, which is lexically scoped -- a lambda
expression evaluates to a closure, which is a triple
containing the environment at the time the lambda
is evaluated (the surrounding environment) and
the parameters and body of the lambda
expression.

When we apply this closure to argument
expressions we evaluate the arguments in the
current environment, make a new environment
that extends the closure's environment with the
new bindings, and evaluate the closure's body
within this new environment.

Think of how this applies to our example:
(let ([y 3])

(let ([f (lambda (x) (+ x y))])
(let ([y 17])

(f 2))))

The outer let creates an environment in which y is
bound to 3 and the inner let ([f]) is evaluated in
this environment. To do this we evaluate the lambda
expression in our environment where y is bound to 3.
It evaluates to a closure in which which has y bound
to 3 in the closure environment. When we call that
closure with argument x, y evaluates to 3.

In Java and C, which are also lexically
scoped but without lambda expressions,
the environments are much more static. At
the time a program is compiled the
compiler can keep track of the
environments and link each variable
reference to its declaration and its location
on the runtime stack.

Think back to this example:

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

With lexical scoping we said this returns 5. In
dynamic scoping the binding of y that applies in
the application (f 2) is [y 17], and the whole
expression returns 19.

How would you evaluate lambdas and applications
in a dynamically scoped language?

How would you evaluate lambdas and
applications in a dynamically scoped language?

a) There is no need for closures; they maintain
the lexical environment, which dynamic
binding does not use.

b) The value of a lambda expression is just its
parameters and body.

c) To apply a procedure to a list of arguments,
we extend the current environment with the
bindings of the parameters to their argument
values and evaluate the body in this
environment.

Why do (or did) people use dynamic
binding?

• It was easy to implement. Indeed,
dynamic binding was understood
several years before static binding.

• It made sense to some people; the
function
(lambda (x) (+ x y) should use whatever
the latest
version of y.

Why do we now use lexical binding?
• Most languages we use today are derived

from Algol-60, which used lexical binding.
• Compilers can use lexical addresses,

known at compile time, for all variable
references.

• Code from lexically-bound languages is
easier to verify.

• It makes more sense to most people.

Here is a simple example of a Python program that
illustrates static scoping:

def f(a):
def g(x):

return x+a
return g

def main():
h = f(5)
a = 45
print(h(6)) # prints 11, not 51.

main()

